Part Number Hot Search : 
MSM6555B B2012 3SK149 0232004 KA2807 MZ55B36 NCP12 CY7C1990
Product Description
Full Text Search
 

To Download IRFR3710ZPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  IRFR3710ZPBF irfu3710zpbf irfu3710z-701pbf hexfet ? power mosfet v dss = 100v r ds(on) = 18m ? i d = 42a  www.irf.com 1 this hexfet ? power mosfet utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. additional features of this design are a 175c junction operating temperature, fast switching speed and improved repetitive avalanche rating . these features combine to make this design an extremely efficient and reliable device for use in a wide variety of applications. s d g description  advanced process technology  ultra low on-resistance  175c operating temperature  fast switching  repetitive avalanche allowed up to tjmax  multiple package options  lead-free features hexfet ? is a registered trademark of international rectifier. i-pak leadform 701 irfu3710z-701pbf refer to page 11 for package outline d-pak IRFR3710ZPBF i-pak irfu3710zpbf absolute maximum ratin g s parameter units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 100c continuous drain current, v gs @ 10v a i d @ t c = 25c continuous drain current, v gs @ 10v (package limited) i dm pulsed drain current p d @t c = 25c power dissipation w linear derating factor w/c v gs gate-to-source voltage v e as (thermally limited) single pulse avalanche energy  mj e as (tested ) single pulse avalanche energy tested value  i ar avalanche current  a e ar repetitive avalanche energy  mj t j operating junction and t stg storage temperature range c soldering temperature, for 10 seconds thermal resistance parameter typ. max. units r jc junction-to-case ??? 1.05 r ja junction-to-ambient (pcb mount)  ??? 50 c/w r ja junction-to-ambient ??? 110 -55 to + 175 300 (1.6mm from case ) 140 0.95 20 max. 56 39 220 42 200 150 see fig.12a, 12b, 15, 16 pd - 95513d

  
   2 www.irf.com s d g s d g electrical characteristics @ t j = 25c (unless otherwise specified) parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 100 ??? ??? v ? v (br)dss / ? t j breakdown voltage temp. coefficient ??? 0.088 ??? v/c r ds(on) static drain-to-source on-resistance ??? 15 18 m ? v gs(th) gate threshold voltage 2.0 ??? 4.0 v gfs forward transconductance 39 ??? ??? s i dss drain-to-source leakage current ??? ??? 20 a ??? ??? 250 i gss gate-to-source forward leakage ??? ??? 200 na gate-to-source reverse leakage ??? ??? -200 q g total gate charge ??? 69 100 q gs gate-to-source charge ??? 15 ??? nc q gd gate-to-drain ("miller") charge ??? 25 ??? t d(on) turn-on delay time ??? 14 ??? t r rise time ??? 43 ??? t d(off) turn-off delay time ??? 53 ??? ns t f fall time ??? 42 ??? l d internal drain inductance ??? 4.5 ??? between lead, nh 6mm (0.25in.) l s internal source inductance ??? 7.5 ??? from package and center of die contact c iss input capacitance ??? 2930 ??? c oss output capacitance ??? 290 ??? c rss reverse transfer capacitance ??? 180 ??? pf c oss output capacitance ??? 1200 ??? c oss output capacitance ??? 180 ??? c oss eff. effective output capacitance ??? 430 ??? source-drain ratin g s and characteristics parameter min. typ. max. units i s continuous source current ??? ??? 56 (body diode) a i sm pulsed source current ??? ??? 220 (body diode)  v sd diode forward voltage ??? ??? 1.3 v t rr reverse recovery time ??? 35 53 ns q rr reverse recovery charge ??? 41 62 nc t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) v gs = 0v, v ds = 1.0v, ? = 1.0mhz v gs = 0v, v ds = 80v, ? = 1.0mhz v gs = 0v, v ds = 0v to 80v  v gs = 10v  v dd = 50v i d = 33a r g = 6.8 ? t j = 25c, i s = 33a, v gs = 0v  t j = 25c, i f = 33a, v dd = 50v di/dt = 100a/s  conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 33a  v ds = v gs , i d = 250a v ds = 100v, v gs = 0v v ds = 100v, v gs = 0v, t j = 125c mosfet symbol showing the integral reverse p-n junction diode. v ds = 25v, i d = 33a i d = 33a v ds = 80v conditions v gs = 10v  v gs = 0v v ds = 25v ? = 1.0mhz v gs = 20v v gs = -20v

  
   www.irf.com 3 fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. typical forward transconductance vs. drain current 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 10v 6.0v 5.0v 4.8v 4.5v 4.3v bottom 4.0v 60s pulse width tj = 25c 4.0v 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60s pulse width tj = 175c 4.0v vgs top 15v 10v 6.0v 5.0v 4.8v 4.5v 4.3v bottom 4.0v 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 v gs , gate-to-source voltage (v) 1.0 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) t j = 25c t j = 175c v ds = 25v 60s pulse width 0 1020304050607080 i d ,drain-to-source current (a) 0 20 40 60 80 100 g f s , f o r w a r d t r a n s c o n d u c t a n c e ( s ) t j = 25c t j = 175c v ds = 10v

  
   4 www.irf.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0 1020304050607080 q g total gate charge (nc) 0.0 2.0 4.0 6.0 8.0 10.0 12.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 80v v ds = 50v v ds = 20v i d = 33a 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 v sd , source-to-drain voltage (v) 0.10 1.00 10.00 100.00 1000.00 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 1 10 100 1000 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 1msec 10msec operation in this area limited by r ds (on) 100sec tc = 25c tj = 175c single pulse

  
   www.irf.com 5 fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature fig 10. normalized on-resistance vs. temperature -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 2.5 3.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 56a v gs = 10v 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.0001 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc ri (c/w) i (sec) 0.576 0.000540 0.249 0.001424 0.224 0.007998 j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 c ci i / ri ci= i / ri 25 50 75 100 125 150 175 t c , case temperature (c) 0 10 20 30 40 50 60 i d , d r a i n c u r r e n t ( a ) limited by package

  
   6 www.irf.com q g q gs q gd v g charge  fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as fig 14. threshold voltage vs. temperature r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 100 200 300 400 500 600 700 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 3.4a 4.8a bottom 33a -75 -50 -25 0 25 50 75 100 125 150 175 200 t j , temperature ( c ) 1.0 2.0 3.0 4.0 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a 1k vcc dut 0 l

  
   www.irf.com 7 fig 15. typical avalanche current vs.pulsewidth fig 16. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 15, 16: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 12a, 12b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ? t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 15, 16). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figure 11) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 0.1 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav assuming ? tj = 25c due to avalanche losses 0.01 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 50 100 150 200 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1% duty cycle i d = 33a

  
   8 www.irf.com fig 17. 
    

 for n-channel hexfet   power mosfets 
   ?  
    ?      ?            p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period     
    + - + + + - - -        ?   
  ?  
 !"!! ?     

#  $$ ? !"!!%"     v ds 90% 10% v gs t d(on) t r t d(off) t f    &' 1 ( 
#   0.1 %         + -   fig 18a. switching time test circuit fig 18b. switching time waveforms

  
   www.irf.com 9  

  
      
    

 int e r nat ional as s e mbled on ww 16, 2001 in t he as s e mbly line "a" or note: "p" in ass embly line pos ition example: lot code 1234 t his is an irf r120 wit h as s e mb l y indicates "l ead-f r ee" product (opt ional) p = de s ignat e s l e ad-f r e e a = as s e mb l y s it e code part number we ek 16 dat e code year 1 = 2001 rectifier int ernat ional logo lot code assembly 34 12 irfr120 116a line a 34 rect ifie r logo irfr120 12 as s e mb l y lot code year 1 = 2001 dat e code part number we ek 16 "p" in as s embly line pos ition indicates "l ead-f r ee" qualification to the cons umer-level p = de s ignat e s l e ad-f r e e product qualif ied t o t he cons umer le ve l (opt ional) notes: 1. for an automotive qualified version of this part please see http://www.irf.com/product-info/datasheets/data/ auirfr3710z.pdf 2. for the most current drawing please refer to ir website at http://www.irf.com/package/

  
   10 www.irf.com  
   
      
    
  78 line a logo international rectifier or product (optional) p = de s i gnat e s l e ad- f r e e a = as s e mb l y s it e code irf u120 part number we e k 19 dat e code year 1 = 2001 rectifier int ernational logo assembly lot code ir f u 120 56 dat e code part number lot code as s e mb l y 56 78 ye ar 1 = 2001 week 19 119a indicates lead-free" as s e mb l e d on ww 19, 2001 in the assembly line "a" note: "p" in as sembly line position example: wit h as s e mb l y t his is an irfu120 lot code 5678 notes: 1. for an automotive qualified version of this part please see http://www.irf.com/product-info/auto/ 2. for the most current drawing please refer to ir website at http://www.irf.com/package/

  
   www.irf.com 11   !   
      
  

  
   12 www.irf.com data and specifications subject to change without notice. irfr/u3710z has been designed and qualifi ed for the industrial market. qualification standards can be found on ir?s web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 09/2010   repetitive rating; pulse width limited by max. junction temperature. (see fig. 11).   limited by t jmax , starting t j = 25c, l = 0.28mh r g = 25 ? , i as = 33a, v gs =10v. part not recommended for use above this value.  pulse width 1.0ms; duty cycle 2%. 
 c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .   limited by t jmax , see fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.   this value determined from sample failure population. 100% tested to this value in production.   when mounted on 1" square pcb (fr-4 or g-10 material) . for recommended footprint and soldering techniques refer to application note #an-994.   

 " #  
      
   tr 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) 12.1 ( .476 ) 11.9 ( .469 ) feed direction feed direction 16.3 ( .641 ) 15.7 ( .619 ) trr trl notes : 1. controlling dimension : millimeter. 2. all dimensions are shown in millimeters ( inches ). 3. outline conforms to eia-481 & eia-541. notes : 1. outline conforms to eia-481. 16 mm 13 inch


▲Up To Search▲   

 
Price & Availability of IRFR3710ZPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X